import hashmap from "./hash/hashmap.js"; import equalPoint from "./hash/point-equal.js"; import hashPoint from "./hash/point-hash.js"; // Given a cut topology, combines duplicate arcs. export default function(topology) { var coordinates = topology.coordinates, lines = topology.lines, line, rings = topology.rings, ring, arcCount = lines.length + rings.length, i, n; delete topology.lines; delete topology.rings; // Count the number of (non-unique) arcs to initialize the hashmap safely. for (i = 0, n = lines.length; i < n; ++i) { line = lines[i]; while (line = line.next) ++arcCount; } for (i = 0, n = rings.length; i < n; ++i) { ring = rings[i]; while (ring = ring.next) ++arcCount; } var arcsByEnd = hashmap(arcCount * 2 * 1.4, hashPoint, equalPoint), arcs = topology.arcs = []; for (i = 0, n = lines.length; i < n; ++i) { line = lines[i]; do { dedupLine(line); } while (line = line.next); } for (i = 0, n = rings.length; i < n; ++i) { ring = rings[i]; if (ring.next) { // arc is no longer closed do { dedupLine(ring); } while (ring = ring.next); } else { dedupRing(ring); } } function dedupLine(arc) { var startPoint, endPoint, startArcs, startArc, endArcs, endArc, i, n; // Does this arc match an existing arc in order? if (startArcs = arcsByEnd.get(startPoint = coordinates[arc[0]])) { for (i = 0, n = startArcs.length; i < n; ++i) { startArc = startArcs[i]; if (equalLine(startArc, arc)) { arc[0] = startArc[0]; arc[1] = startArc[1]; return; } } } // Does this arc match an existing arc in reverse order? if (endArcs = arcsByEnd.get(endPoint = coordinates[arc[1]])) { for (i = 0, n = endArcs.length; i < n; ++i) { endArc = endArcs[i]; if (reverseEqualLine(endArc, arc)) { arc[1] = endArc[0]; arc[0] = endArc[1]; return; } } } if (startArcs) startArcs.push(arc); else arcsByEnd.set(startPoint, [arc]); if (endArcs) endArcs.push(arc); else arcsByEnd.set(endPoint, [arc]); arcs.push(arc); } function dedupRing(arc) { var endPoint, endArcs, endArc, i, n; // Does this arc match an existing line in order, or reverse order? // Rings are closed, so their start point and end point is the same. if (endArcs = arcsByEnd.get(endPoint = coordinates[arc[0]])) { for (i = 0, n = endArcs.length; i < n; ++i) { endArc = endArcs[i]; if (equalRing(endArc, arc)) { arc[0] = endArc[0]; arc[1] = endArc[1]; return; } if (reverseEqualRing(endArc, arc)) { arc[0] = endArc[1]; arc[1] = endArc[0]; return; } } } // Otherwise, does this arc match an existing ring in order, or reverse order? if (endArcs = arcsByEnd.get(endPoint = coordinates[arc[0] + findMinimumOffset(arc)])) { for (i = 0, n = endArcs.length; i < n; ++i) { endArc = endArcs[i]; if (equalRing(endArc, arc)) { arc[0] = endArc[0]; arc[1] = endArc[1]; return; } if (reverseEqualRing(endArc, arc)) { arc[0] = endArc[1]; arc[1] = endArc[0]; return; } } } if (endArcs) endArcs.push(arc); else arcsByEnd.set(endPoint, [arc]); arcs.push(arc); } function equalLine(arcA, arcB) { var ia = arcA[0], ib = arcB[0], ja = arcA[1], jb = arcB[1]; if (ia - ja !== ib - jb) return false; for (; ia <= ja; ++ia, ++ib) if (!equalPoint(coordinates[ia], coordinates[ib])) return false; return true; } function reverseEqualLine(arcA, arcB) { var ia = arcA[0], ib = arcB[0], ja = arcA[1], jb = arcB[1]; if (ia - ja !== ib - jb) return false; for (; ia <= ja; ++ia, --jb) if (!equalPoint(coordinates[ia], coordinates[jb])) return false; return true; } function equalRing(arcA, arcB) { var ia = arcA[0], ib = arcB[0], ja = arcA[1], jb = arcB[1], n = ja - ia; if (n !== jb - ib) return false; var ka = findMinimumOffset(arcA), kb = findMinimumOffset(arcB); for (var i = 0; i < n; ++i) { if (!equalPoint(coordinates[ia + (i + ka) % n], coordinates[ib + (i + kb) % n])) return false; } return true; } function reverseEqualRing(arcA, arcB) { var ia = arcA[0], ib = arcB[0], ja = arcA[1], jb = arcB[1], n = ja - ia; if (n !== jb - ib) return false; var ka = findMinimumOffset(arcA), kb = n - findMinimumOffset(arcB); for (var i = 0; i < n; ++i) { if (!equalPoint(coordinates[ia + (i + ka) % n], coordinates[jb - (i + kb) % n])) return false; } return true; } // Rings are rotated to a consistent, but arbitrary, start point. // This is necessary to detect when a ring and a rotated copy are dupes. function findMinimumOffset(arc) { var start = arc[0], end = arc[1], mid = start, minimum = mid, minimumPoint = coordinates[mid]; while (++mid < end) { var point = coordinates[mid]; if (point[0] < minimumPoint[0] || point[0] === minimumPoint[0] && point[1] < minimumPoint[1]) { minimum = mid; minimumPoint = point; } } return minimum - start; } return topology; }