/** * @module ol/geom/MultiLineString */ import LineString from './LineString.js'; import SimpleGeometry from './SimpleGeometry.js'; import {arrayMaxSquaredDelta, assignClosestArrayPoint} from './flat/closest.js'; import {closestSquaredDistanceXY} from '../extent.js'; import {deflateCoordinatesArray} from './flat/deflate.js'; import {douglasPeuckerArray} from './flat/simplify.js'; import {extend} from '../array.js'; import {inflateCoordinatesArray} from './flat/inflate.js'; import { interpolatePoint, lineStringsCoordinateAtM, } from './flat/interpolate.js'; import {intersectsLineStringArray} from './flat/intersectsextent.js'; /** * @classdesc * Multi-linestring geometry. * * @api */ class MultiLineString extends SimpleGeometry { /** * @param {Array|LineString>|Array} coordinates * Coordinates or LineString geometries. (For internal use, flat coordinates in * combination with `layout` and `ends` are also accepted.) * @param {import("./Geometry.js").GeometryLayout} [layout] Layout. * @param {Array} [ends] Flat coordinate ends for internal use. */ constructor(coordinates, layout, ends) { super(); /** * @type {Array} * @private */ this.ends_ = []; /** * @private * @type {number} */ this.maxDelta_ = -1; /** * @private * @type {number} */ this.maxDeltaRevision_ = -1; if (Array.isArray(coordinates[0])) { this.setCoordinates( /** @type {Array>} */ ( coordinates ), layout ); } else if (layout !== undefined && ends) { this.setFlatCoordinates( layout, /** @type {Array} */ (coordinates) ); this.ends_ = ends; } else { let layout = this.getLayout(); const lineStrings = /** @type {Array} */ (coordinates); const flatCoordinates = []; const ends = []; for (let i = 0, ii = lineStrings.length; i < ii; ++i) { const lineString = lineStrings[i]; if (i === 0) { layout = lineString.getLayout(); } extend(flatCoordinates, lineString.getFlatCoordinates()); ends.push(flatCoordinates.length); } this.setFlatCoordinates(layout, flatCoordinates); this.ends_ = ends; } } /** * Append the passed linestring to the multilinestring. * @param {LineString} lineString LineString. * @api */ appendLineString(lineString) { if (!this.flatCoordinates) { this.flatCoordinates = lineString.getFlatCoordinates().slice(); } else { extend(this.flatCoordinates, lineString.getFlatCoordinates().slice()); } this.ends_.push(this.flatCoordinates.length); this.changed(); } /** * Make a complete copy of the geometry. * @return {!MultiLineString} Clone. * @api */ clone() { const multiLineString = new MultiLineString( this.flatCoordinates.slice(), this.layout, this.ends_.slice() ); multiLineString.applyProperties(this); return multiLineString; } /** * @param {number} x X. * @param {number} y Y. * @param {import("../coordinate.js").Coordinate} closestPoint Closest point. * @param {number} minSquaredDistance Minimum squared distance. * @return {number} Minimum squared distance. */ closestPointXY(x, y, closestPoint, minSquaredDistance) { if (minSquaredDistance < closestSquaredDistanceXY(this.getExtent(), x, y)) { return minSquaredDistance; } if (this.maxDeltaRevision_ != this.getRevision()) { this.maxDelta_ = Math.sqrt( arrayMaxSquaredDelta( this.flatCoordinates, 0, this.ends_, this.stride, 0 ) ); this.maxDeltaRevision_ = this.getRevision(); } return assignClosestArrayPoint( this.flatCoordinates, 0, this.ends_, this.stride, this.maxDelta_, false, x, y, closestPoint, minSquaredDistance ); } /** * Returns the coordinate at `m` using linear interpolation, or `null` if no * such coordinate exists. * * `extrapolate` controls extrapolation beyond the range of Ms in the * MultiLineString. If `extrapolate` is `true` then Ms less than the first * M will return the first coordinate and Ms greater than the last M will * return the last coordinate. * * `interpolate` controls interpolation between consecutive LineStrings * within the MultiLineString. If `interpolate` is `true` the coordinates * will be linearly interpolated between the last coordinate of one LineString * and the first coordinate of the next LineString. If `interpolate` is * `false` then the function will return `null` for Ms falling between * LineStrings. * * @param {number} m M. * @param {boolean} [extrapolate] Extrapolate. Default is `false`. * @param {boolean} [interpolate] Interpolate. Default is `false`. * @return {import("../coordinate.js").Coordinate|null} Coordinate. * @api */ getCoordinateAtM(m, extrapolate, interpolate) { if ( (this.layout != 'XYM' && this.layout != 'XYZM') || this.flatCoordinates.length === 0 ) { return null; } extrapolate = extrapolate !== undefined ? extrapolate : false; interpolate = interpolate !== undefined ? interpolate : false; return lineStringsCoordinateAtM( this.flatCoordinates, 0, this.ends_, this.stride, m, extrapolate, interpolate ); } /** * Return the coordinates of the multilinestring. * @return {Array>} Coordinates. * @api */ getCoordinates() { return inflateCoordinatesArray( this.flatCoordinates, 0, this.ends_, this.stride ); } /** * @return {Array} Ends. */ getEnds() { return this.ends_; } /** * Return the linestring at the specified index. * @param {number} index Index. * @return {LineString} LineString. * @api */ getLineString(index) { if (index < 0 || this.ends_.length <= index) { return null; } return new LineString( this.flatCoordinates.slice( index === 0 ? 0 : this.ends_[index - 1], this.ends_[index] ), this.layout ); } /** * Return the linestrings of this multilinestring. * @return {Array} LineStrings. * @api */ getLineStrings() { const flatCoordinates = this.flatCoordinates; const ends = this.ends_; const layout = this.layout; /** @type {Array} */ const lineStrings = []; let offset = 0; for (let i = 0, ii = ends.length; i < ii; ++i) { const end = ends[i]; const lineString = new LineString( flatCoordinates.slice(offset, end), layout ); lineStrings.push(lineString); offset = end; } return lineStrings; } /** * @return {Array} Flat midpoints. */ getFlatMidpoints() { const midpoints = []; const flatCoordinates = this.flatCoordinates; let offset = 0; const ends = this.ends_; const stride = this.stride; for (let i = 0, ii = ends.length; i < ii; ++i) { const end = ends[i]; const midpoint = interpolatePoint( flatCoordinates, offset, end, stride, 0.5 ); extend(midpoints, midpoint); offset = end; } return midpoints; } /** * @param {number} squaredTolerance Squared tolerance. * @return {MultiLineString} Simplified MultiLineString. * @protected */ getSimplifiedGeometryInternal(squaredTolerance) { const simplifiedFlatCoordinates = []; const simplifiedEnds = []; simplifiedFlatCoordinates.length = douglasPeuckerArray( this.flatCoordinates, 0, this.ends_, this.stride, squaredTolerance, simplifiedFlatCoordinates, 0, simplifiedEnds ); return new MultiLineString(simplifiedFlatCoordinates, 'XY', simplifiedEnds); } /** * Get the type of this geometry. * @return {import("./Geometry.js").Type} Geometry type. * @api */ getType() { return 'MultiLineString'; } /** * Test if the geometry and the passed extent intersect. * @param {import("../extent.js").Extent} extent Extent. * @return {boolean} `true` if the geometry and the extent intersect. * @api */ intersectsExtent(extent) { return intersectsLineStringArray( this.flatCoordinates, 0, this.ends_, this.stride, extent ); } /** * Set the coordinates of the multilinestring. * @param {!Array>} coordinates Coordinates. * @param {import("./Geometry.js").GeometryLayout} [layout] Layout. * @api */ setCoordinates(coordinates, layout) { this.setLayout(layout, coordinates, 2); if (!this.flatCoordinates) { this.flatCoordinates = []; } const ends = deflateCoordinatesArray( this.flatCoordinates, 0, coordinates, this.stride, this.ends_ ); this.flatCoordinates.length = ends.length === 0 ? 0 : ends[ends.length - 1]; this.changed(); } } export default MultiLineString;